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Abstract—Many real-world optimization problems are dy-
namic (time dependent) and require an algorithm that is able
to continuously track a changing optimum over time. In this
paper, we investigate a recently proposed algorithm for dynamic
continuous optimization, called MLSDO (Multiple Local Search
algorithm for Dynamic Optimization). MLSDO is based on several
coordinated local search agents and on the archiving of the op-
tima found over time. This archive is used when a change occurs
in the objective function. The performance of the algorithm is
evaluated on the set of benchmark functions provided for the
IEEE WCCI-2012 Competition on Evolutionary Computation for
Dynamic Optimization Problems.

I. INTRODUCTION

Recently, dynamic optimization has attracted a growing

interest, due to its practical relevance. Many real-world prob-

lems are dynamic optimization problems (DOPs), i.e., their

objective function changes over time. For DOPs, the goal is

not only to locate the global optimum, but also to follow

it as closely as possible. Almost all algorithms for DOPs

are population-based metaheuristics. We can roughly classify

them in five categories: evolutionary algorithms (EAs), particle

swarm optimization (PSO), ant colony optimization (ACO),

artificial immune systems (AIS) and other algorithms (hybrid,

multi-agent algorithms, local search based approaches).

The main goal of this paper is to evaluate the performance

of our recently proposed dynamic optimization algorithm,

called MLSDO [1], [2]. The main components of MLSDO

are an evolving population of well diversified solutions, and

an archiving of good solutions found during the search. More

precisely, it makes use of a population of coordinated local

searches to explore the search space. The use of local searches

provides a fast convergence to the local optima, and the

strategies used to coordinate these local searches enable the

algorithm to widely explore the search space. The local optima

found during the optimization process are archived, in order

to be used when a change is detected. MLSDO is based on a

multi-agent architecture [3].

The rest of this paper is organized as follows. Section II de-

scribes the fundamentals of the proposed MLSDO algorithm.

Section III explains each strategy used in MLSDO. Section IV

presents the benchmark sets used to test the algorithm. Exper-

imental results are discussed in Section V. Conclusions and

work under progress are presented in section VI.

II. THE MLSDO ALGORITHM

In the following subsections, we first describe how the

distances are computed in the search space. Then, we describe

the overall scheme of the proposed MLSDO algorithm and the

initialization procedure.

A. Distance handling

In this paper, we propose to define the search space as a

d-dimensional Euclidean space, since it is the simplest and

most commonly used space. The inner product is given by the

usual dot product, denoted by 〈·, ·〉, and the Euclidean norm

is denoted by ‖·‖.

Then, as the search space may not have the same bounds

on each dimension, we use a “normalized” basis. We denote

by ∆i the size of each interval that defines the search space,

where i ∈ {1, ..., d}. Then, the unit vectors (~ei) in the direction

of each axis of the Cartesian coordinates system are scaled,

in order to produce modified basis vectors (~ui), defined as

{~u1 = ∆1 ~e1, ~u2 = ∆2 ~e2, ..., ~ud = ∆d ~ed}. This change in

basis transforms a hyper-rectangular search space into a hyper-

square search space, according to (1), where x′

i and xi are the

ith coordinates of a solution expressed in the hyper-square

space, and in the hyper-rectangular space, respectively.

x′

i =
xi

∆i

for i = 1, 2, ..., d (1)

B. Overall scheme

MLSDO is a multi-agent algorithm, that makes use of a

population of agents to explore the search space. Agents are

“nearsighted”: they only have a local view of the search space.

More precisely, agents are only performing local searches;

they jump from their current position to a better one, in their

neighborhood, until they cannot improve their current solution,

reaching thus a local optimum. A selection of these optima are

saved in order to accelerate the convergence of the algorithm.

The overall scheme of MLSDO consists of the following two

modules (Figure 1):

1) Memory manager: in case of a multimodal objective

function, a dynamic optimization algorithm needs to

keep track of each local optimum found, since one of

them can become the new global optimum after a change

occurs in the objective function. Thus, we propose to
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Fig. 1. Overall scheme of MLSDO. N is the number of currently existing
agents. Each agent performs a search procedure described in subsection II-D.

save the found optima in memory. The memory manager

maintains the archive of local optima that are provided

by the coordinator.

2) Coordinator: it supervises the whole search, and man-

ages the interactions between the memory manager and

the agents. It compensates for the nearsightedness of the

agents, and it is able to prevent them from searching in

unpromising zones of the search space. The coordinator

is informed about the found local optima, and manages

the creation, destruction and relocation of the agents.

The initialization step in Figure 1 is discussed in subsection

II-C and in section III. The stopping criterion depends on the

optimization problem.

C. Computation of the initial set of agents

The coordinator starts by creating the agents in the initial-

ization phase of MLSDO. The number of agents to be created

is fixed by the parameter na. The initial positions of these

agents are not randomly generated, but are computed in order

to prevent several agents from being placed close to each other.

This is done by sequentially placing the agents at the locations

generated by a heuristic. This heuristic is detailed in subsection

III-C.

Thus, at the end of this heuristic, we get a set of initial

positions for the set of agents that is widely covering the search

space.

D. The flowchart of an agent

Agents proceed by running their local search indepen-

dently of each other. The flowchart of the search proce-

dure of an agent is illustrated in Figure 2. One can see

that two special states, named “SYNCHRONIZATION A” and
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Fig. 2. Flowchart of the main procedure of a MLSDO agent.

“SYNCHRONIZATION B”, appear in this flowchart. These states

mark the end of one step of the procedure of an agent.

Hence, if one of these states has been reached, then the

agent halts its execution until all other agents have reached

one of these states. Afterwards, the execution of the agents

is resumed; i.e., if an agent halts on SYNCHRONIZATION A

(SYNCHRONIZATION B, respectively), then it resumes its

execution on SYNCHRONIZATION A (SYNCHRONIZATION B,

respectively). This special state allows the parallel execution

of the agents.

III. THE OPTIMIZATION STRATEGIES USED IN MLSDO

In the following subsections, the strategies used in MLSDO

are described.

A. The exploration strategy of the agents

An MLSDO agent explores the search space step-by-step,

moving from their current solution ~Sc to a better one ~S′

c in its

neighborhood, until it reaches a local optimum. These step-by-

step displacements are performed according to a step size R,

adapted during the local search of the agent. An agent can be

created for two reasons: to explore the search space or to track

an archived optimum, when a change in the objective function

is detected. In the first case, the agent is called an “exploring

agent”, and in the second case, it is called a “tracking agent”.

These two kinds of agents only differ in their initialization:

• Exploring agents: At the initialization of an exploring

agent, its current solution ~Sc is provided by the coordi-

nator. The initial value of its step size R is equal to re,

a parameter of MLSDO to be fixed.
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localSearch

Inputs: ~Sc, d, R, U, rl, δph, δpl, ~D

local variables: ~S′

c,
~Sw, stop, ~D′

{

~S′

c,
~Sw

}

← selectCandidate
(

~Sc, d,R
)

stop← stoppingCriterion
(

~S′

c,
~Sw, ~Sc, R, rl, δph, δpl

)

Calculate the direction vector ~D′

Update the cumulative dot product U

Update the step size R

if ~S′

c 6= ~Sc then
~Sc ← ~S′

c

~D← ~D′

end

if stop = true then

Stopping criterion (of the local search) satisfied: ~Sc is the local
optimum found

end

return
{

~Sc, R, U, ~D
}

Fig. 3. Procedure that performs one step of the local search of an agent. ~Sc

is the current solution of the agent. d is the dimension of the search space.
R is the step size of the agent. U is the value of the cumulative dot product

(see equation 2). rl, δph and δpl are parameters of the algorithm. ~D is the

direction vector of the last displacement of the agent. ~D′ is the direction vector
of the displacement currently performed (see equation 3). The procedures
selectCandidate and stoppingCriterion are described in subsection III-A.

• Tracking agents: Their current solutions are initialized

using the best solutions of the archive containing the

found local optima. The initial value of R is equal to

rl, a parameter of MLSDO that has to be lower than

re. Indeed, an agent created to explore the search space

requires a greater initial step size than a tracking agent.

At the initialization of the local search of an agent, in

addition to ~Sc and R, two other variables are initialized: the

direction vector ~D of the last displacement of the agent, and

the cumulative dot product U (see equation 2), set to the null

vector and zero, respectively. These variables are used to adapt

R, as described later in this section.

We focus now on the local search of an agent, summarized

in Figure 3 and described in detail below. The procedure in

Figure 3 provides the details of the state indicated in Figure

2 by the description “perform one step of the local search

of the agent”. Thus, it is repeated each time the agent is

in this “local search” state, so as to enable the convergence

of the local search. This is the main procedure of the local

search performed by an agent, and it calls the subprocedures

selectCandidate and stoppingCriterion that are defined below.

At each step of its local search, the agent moves from

its current solution ~Sc to the new candidate solution ~S′

c

according to the mechanism in Figure 4. As we can see,

two candidate solutions are evaluated per dimension of the

selectCandidate

Inputs: ~Sc, d, R

local variables: i, ~Sprev , ~Snext, ~Si

~S′

c ← ~Sc

~Sw ← ~Sc

for i = 1 to d do
~Sprev ← ~S′

c −R× ~ui

~Snext ← ~S′

c + R× ~ui

Repair ~Sprev if it is outside the search space

Repair ~Snext if it is outside the search space

Evaluate ~Sprev and ~Snext

~Si ← the best solution among ~Sprev and ~Snext

if ~Si is strictly better than ~S′

c then
~S′

c ← ~Si

end

~Si ← the worst solution among ~Sprev and ~Snext

if ~Si is worse or equal to ~Sw then
~Sw ← ~Si

end

end

return
{

~S′

c,
~Sw

}

Fig. 4. Selection mechanism: selects the candidate solution ~S′

c to replace

the current solution ~Sc of an agent. d is the dimension of the search space.
R is the step size of the agent. ~ui is the basis vector of the ith axis of the

search space. ~Sw is the worst tested candidate solution. The function Evaluate

computes the value of the objective function of a given solution and assigns
this value to the solution.

search space, denoted by ~Sprev and ~Snext. They stand in

opposite directions from ~S′

c along an axis of the search space,

at equal distance R from ~S′

c. If ~Sprev or ~Snext is outside the

search space, it is “repaired” by setting it to the closest point

inside the search space. For each axis of the search space, the

best solution among ~Sprev , ~Snext and ~S′

c becomes the new

candidate solution ~S′

c.

At the end of this procedure, the worst candidate solution
~Sw is also returned, because it is used in the stopping criterion

of the agent.

The adaptation of the step size R is based on the cumulative

dot product U , that makes use of trajectory information

gathered along the steps of the agent (using the successive

direction vectors of the displacements of the agent). Thus,

at each iteration of the local search of an agent, the value

of U is firstly updated, then R is adapted according to the

new value of U . This new value, denoted by U ′, is computed

according to the equation (2), where 〈 ~D, ~D′〉 is the dot product

of the last two direction vectors (the direction vectors of the

previous and the current steps of the agent, respectively). The

direction vector ~D′ (from ~Sc to ~S′

c) is calculated according to

the equation (3).
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U ′ =
1

2
× U + 〈 ~D, ~D′〉 (2)

~D′ =











~S′
c
−~Sc

‖~S′
c
−~Sc‖

if ~S′

c 6= ~Sc

~0 otherwise

(3)

After the update of U (after setting U to U ′), depending on

the situation, the step size is doubled or halved:

• if the procedure in Figure 4 cannot find a better candidate

solution in the neighborhood of ~Sc, i.e., if ~S′

c = ~Sc, then

R is halved;

• if the agent appears to be moving in a forward direction,

i.e., if U > re, then R is doubled to accelerate the

convergence of the agent, and U is set to 0. This means

that U cannot take values higher than re.

To prevent U from having high negative values, U is

constrained to be higher or equal to −re.

The stopping criterion of the local search is presented in

Figure 5, where δph and δpl are two parameters of MLSDO.

If the stopping criterion is satisfied, then the procedure returns

true, otherwise, it returns false. As we can see, if the current

solution of an agent is the best solution found by MLSDO

since the last change in the objective function, then we use

a higher precision δph in the stagnation criterion of its local

search, otherwise we use a lower precision δpl. We choose

δph to be not larger than δpl. In this way, we prevent the fine-

tuning of low quality solutions, which could lead to a waste

of fitness function evaluations; only the best solution found by

the algorithm is fine-tuned.

B. The diversity maintaining strategy

If an agent has found a local optimum, then this optimum

is transmitted to memory through the coordinator. Afterwards,

the coordinator gives the agent its new position (see subsection

III-C), in order to perform a new local search (and R is

initialized to re).

To prevent several agents from exploring the same zone of

the search space, and to prevent them from converging to the

same local optimum, an exclusion radius is attributed to each

agent. This exclusion radius is the parameter re. Hence, if an

agent detects one or several other agents at a distance lower

than re, then only the agent with the best fitness, among the

detected agents including the agent having detected them, is

allowed to continue its search. All the other agents have to be

relocated.

C. The relocation of the agents

If an agent has terminated its local search (it has found an

optimum), or if it has been found too close to other agents (see

Figure 2), then the coordinator can either destroy the agent,

or let the agent start a new local search at a given position. It

is performed according to the procedure in Figure 6.

stoppingCriterion

Inputs: ~S′

c,
~Sw, ~Sc, R, rl, δph, δpl

local variables: p

if R < rl then

if ~S′

c 6= ~Sc then

p←
∣

∣

∣
fitness

(

~S′

c

)

− fitness
(

~Sc

)
∣

∣

∣

else

p←
∣

∣

∣
fitness

(

~Sw

)

− fitness
(

~Sc

)
∣

∣

∣

end

if ~Sc is the best solution found since the last change in the
objective function then

if p ≤ δph then
return true

end

else
if p ≤ δpl then

return true

end

end

end

return false

Fig. 5. Procedure that tests the stopping criterion of an agent. fitness is a

function that returns the value of the objective function of a given solution. ~S′

c

is the candidate solution found to replace the current solution ~Sc of the agent.
~Sw is the worst tested candidate solution. R is the step size of the agent. rl
is the initial step size of tracking agents. δph and δpl are the highest and the
lowest precision parameters of the stagnation criterion, respectively.

relocateOrDestroyAgent

Inputs: N,na, d, Am, Ai, re

local variables: d0, ~Snew

if N > na then

destroy the agent

end
{

d0, ~Snew

}

← newInitialSolution(d, Am, Ai)

if (N > 1) and (d0 ≤ re) then
destroy the agent

else

relocate the agent at ~Snew with an initial step size of re

end

Fig. 6. Procedure that destroys or relocates an agent. N is the number of
currently existing agents. na is the maximum number of exploring agents. d
is the dimension of the search space. Am is the archive of the local optima
found by the agents. Ai is the archive of the last initial positions of the agents.
re is the initial step size of exploring agents.

We can note that this procedure makes use of two archives:

Am and Ai. The archive Am contains the saved optima (its

capacity is equal to nm, see section III-E). The archive Ai

saves the last nm initial positions of agents to be created

or relocated. Each time a change in the objective function is

detected, the archive Ai is cleared. This procedure produces a
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newInitialSolution

Inputs: d,Am, Ai

local variables: ~S, d1, d2, ai, ~Sc, ~Si

d0 ← −∞
repeat 10× d times

~S ← a random solution uniformly chosen in the search space

d1 ← +∞
for each agent ai do

~Sc ← the current solution of ai

d2 ← the distance between ~S and ~Sc

if d2 < d1 then

d1 ← d2

end

end

for each ~Si ∈ (Am ∪ Ai) do

d2 ← the distance between ~S and ~Si

if d2 < d1 then

d1 ← d2

end

end

if d1 > d0 then

d0 ← d1

~Snew ← ~S

end

end

return
{

d0, ~Snew

}

Fig. 7. Procedure to generate an initial solution ~Snew for an agent. It also
returns the distance d0 between this solution, and the closest one in the set
of current solutions of the agents, and of solutions stored in Am (the archive
of the found local optima) and Ai (the archive of the last initial positions of
the agents). d is the dimension of the search space.

new position for the agent which has to be relocated, which

is far from all the other agents, and from the solutions stored

in Am and Ai, by using the newInitialSolution procedure (see

Figure 7). This heuristic generates several random locations

uniformly distributed in the search space, selects one of them

and returns it. The selection mechanism of this heuristic is

as follows. For each generated location, the distance to the

closest location in the set of current solutions of the agents,

and of solutions stored in Am and Ai, is calculated. Then,

the generated location that has the greatest calculated distance

is selected. The number of generated locations has been

empirically set to 10 × d, where d is the dimension of the

search space. It is a compromise between the computational

cost, and the accuracy of the heuristic. If the new position
~Snew for the agent is in an unexplored zone of the search

space (if it is not too close to another agent, to an archived

optimum or to an archived initial position), then the agent is

relocated at ~Snew. Otherwise, the search space is considered

saturated and the coordinator destroys the agent. The decision

of destroying the agent is also taken if more than na agents

exist. It happens if agents are created to track archived optima

addAgents

Inputs: na, nc, N,m,Am, rl, re

local variables: nt, nn, ~Obest

nt ← max(0, min(na + nc −N, nc,m))

nn ← max(0,min(na −N − nt,m− nt))

repeat nt times
~Obest ← the best optimum in Am

Am ← Am − { ~Obest}
create an agent with initial solution ~Obest and initial step size
rl

end

repeat nn times
~Obest ← the best optimum in Am

Am ← Am − { ~Obest}
create an agent with initial solution ~Obest and initial step size
re

end

Fig. 8. Procedure to create additional agents after a change, to track the best
archived optima and to make the number N of existing agents at least equal
to na (the maximum number of exploring agents). max and min are functions
that return the maximum and the minimum value among several given values,
respectively. nc is the maximum number of tracking agents. m is the number
of local optima currently stored in the archive Am. rl and re are the initial
step sizes of tracking and exploring agents, respectively.

after the detection of a change in the objective function (see

subsection III-D).

D. The change detection and the tracking of the optima

The coordinator detects the changes in the objective func-

tion. This detection is performed when all the agents have

completed one step of their search procedure, i.e., when all the

agents are in a SYNCHRONIZATION state (see subsection II-D).

Changes in the objective function are detected by reevaluating

the fitness of a randomly chosen agent or archived optimum,

and comparing it to its previous value. If these values are

different, a change is supposed to have occurred, and the

following actions are taken: the fitnesses of all agents and

archived optima are reevaluated; then, the procedure of the

creation of additional agents (Figure 8) is executed.

These additional agents are initialized using the best optima

in Am as initial solutions. Each time an agent is created,

the optimum used to initialize it is removed from Am. The

maximum number of tracking agents to create (to track optima

when a change is detected) is nc. After creating the tracking

agents, if the number N of currently existing agents is lower

than na, then at most na −N exploring agents are created.

E. Archive management

The memory manager maintains the archive Am of local

optima found by the agents. This archive must be bounded,

its size is fixed to a number nm of entries. We propose the

expression (4) to calculate the value of nm, where the round

function rounds a number to the nearest integer, re is the
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replaceDominatedOptima

Inputs: ~Oc, Am, rl, re

local variables: Asub, ~Obest, ~Oi

Asub ← ∅

~Obest ← ~Oc

for each ~Oi ∈ Am do

if

∥

∥

∥

~Oc − ~Oi

∥

∥

∥
≤ √rl × re then

Asub ← Asub ∪ { ~Oi}
if ~Oi is strictly better than ~Obest then

~Obest ← ~Oi

end

end

end

Am ← Am − Asub

Am ← Am ∪ { ~Obest}
return Am

Fig. 9. Procedure that replaces the dominated optima. ~Oc is the newly found
optimum. Am is the archive of the local optima found by the agents. rl and
re are the initial step sizes of tracking and exploring agents, respectively.

exclusion radius of the agents and d is the dimension of the

search space. This expression was defined empirically.

nm = round

(

d

re

)

(4)

We introduce a flag isNotUpToDate that indicates if a

change in the objective function occurred since the detection

of a given stored optimum: if a change occurred, it returns

true; otherwise, it returns false.

If the archive is full, then we use the following conditions

to update the archive:

1) If the new optimum, denoted by ~Oc, is better than the

worst optimum in the archive, or its value is at least

equal to the one of this worst optimum, then:

a) If there is one or several optima in the archive

where isNotUpToDate returns true, then the worst

of them is replaced by ~Oc;

b) otherwise, the worst optimum of the archive is

replaced by ~Oc.

2) If there is one or several optima in the archive that are

“too close” to ~Oc (an archived optimum is considered

“too close” to ~Oc if it lies at a distance from ~Oc lower

or equal to the geometric average of rl and re), then

all these optima close to each other are considered to

be dominated by the best of them. Thus, this subset of

solutions is replaced by only their best one. The different

steps of this replacement are in Figure 9.

IV. BENCHMARK SET

The performances of MLSDO are evaluated using the

benchmark generator for the IEEE WCCI-2012 competition

Parameter Value

Dimension (fixed) 5
Dimension (changed) [2, 15]

Change frequency 50000
Number of changes 60

Number of peaks (fixed) 10
Number of peaks (changed) [10, 50]

TABLE I
MAIN PARAMETERS USED FOR THE COMPETITION.

on evolutionary computation for dynamic optimization prob-

lems. It uses the Generalized Dynamic Benchmark Generator

(GDBG) [4], and it is based on the benchmark used during

the IEEE CEC’09 competition on dynamic optimization [5].

Six functions are used to create this benchmark:

F1: rotation peak function

F2: composition of Sphere’s function

F3: composition of Rastrigin’s function

F4: composition of Griewank’s function

F5: composition of Ackley’s function

F6: hybrid composition function

A total of eight dynamic scenarios with different degrees of

difficulty are proposed:

T1: small step change (a small displacement)

T2: large step change (a large displacement)

T3: random change (Gaussian displacement)

T4: chaotic change (logistic function)

T5: recurrent change (a periodic displacement)

T6: recurrent with noise (the same as above, but the

optimum never returns exactly to the same point)

T7: changing the dimension of the problem

T8: changing the number of peaks

The basic parameters of the benchmark are given in Table

I.

There are 60 test cases that correspond to the combinations

of the six problems with the eight change scenarios using a

changing ratio equal to 1.0, and to the combinations of the

problem F1 with the first six change scenarios using a changing

ratio equal to 0.3 and 0.7. The changing ratio is a value in

[0, 1], and it gives the number of peaks that are allowed to

change. For each test case, the mean value of the absolute

error and the corresponding standard deviation are recorded,

denoted by mean and STD, respectively.

Then, a mark is calculated for each test case, denoted by

performancek. The sum of all marks performancek gives

a score, denoted by performance, that corresponds to the

overall performance of the tested algorithm. The maximum

value of this score is 60 for the competition.

The values of mean, STD and performancek are calcu-

lated according to the method proposed in [6].

V. RESULTS AND DISCUSSION

In [2], MLSDO has been evaluated using the benchmark

functions provided for the IEEE CEC’09 competition on
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Name Type Interval Value Short description

re real (0, 1] 0.1 exclusion radius of the
agents, and initial step size
of exploring agents

rl real (0, re) 0.07 initial step size of tracking
agents

δph real [0, δpl] 0.001 highest precision parameter
of the stagnation criterion of
the agents local searches

δpl real [δph,+∞] 1.0 lowest precision parameter
of the stagnation criterion of
the agents local searches

na integer [1, 10] 3 maximum number of explor-
ing agents

nc integer [0, 20] 1 maximum number of track-
ing agents created after the
detection of a change

TABLE II
MLSDO PARAMETER SETTING FOR THE SET OF BENCHMARK FUNCTIONS

AT HAND.

dynamic optimization. The overall performance of MLSDO

for the CEC’09 competition is equal to 81.28 (a score out of

100), which is better than the score obtained by the winner of

the CEC’09 competition, equal to 69.73 [7].

In the following subsections, the parameter setting and

the results obtained by MLSDO for the IEEE WCCI-2012

competition are presented and discussed.

A. Parameter setting of MLSDO

Table II summarizes the six parameters of MLSDO that the

user has to define. The given values are suitable for the set of

test functions provided for the competition. These values were

fixed empirically, and used to perform all our experiments.

Each parameter has been fitted manually, one after the other,

since there is no important correlation between them. A total of

26 possible sets of values for the parameters has been tested,

from which we selected the one that maximizes the overall

performance. The first tested set of values is the one used

for the benchmark functions of the IEEE CEC’09 competition

on dynamic optimization (re = 0.1, rl = 0.005, δph = 0.001,

δpl = 1.5, na = 5, nc = 0). Using this set of values, we get

an overall performance equal to 56.192 for the IEEE WCCI-

2012 competition. Then, by testing lower and greater values

for each parameter, we reach a better overall performance,

equal to 56.424.

To fit the parameters of MLSDO, one can take into account

the following considerations. The number of agents na cannot

be too high, because the convergence needs to be fast. Having

too many agents exploring the search space slows down indeed

the individual convergence of each agent. The lowest precision

parameter δpl needs to be correctly adapted to the objective

function and to its change severity. A low value for δpl prevents

the agents from widely exploring the search space for a fast

System Linux (Red Hat)
CPU 2 × Intel R© Xeon R© X5650 (6 cores, 2.66 GHz)
RAM 48 GB
Language C++

Algorithm
Multiple Local Search algorithm for Dynamic Optimization
(MLSDO)

TABLE III
COMPUTER CONFIGURATION.

changing objective function, since they will spend too many

evaluations on fine-tuning their current solution, and too few

ones on exploring other zones of the search space. Hence,

the lower the number of evaluations between two changes is,

the higher the value of δpl should be. This means that the

compromise between a high precision of the found optima

(intensification) and a wide exploration of the search space

(diversification) needs to be in favor of diversification for fast

changing objective functions. The exclusion radius re should

match the radius of the attraction zone of an optimum and

rl has to be lower than re. The parameter nc corresponds

to the number of archived optima that need to be tracked at

every change of the objective function. If the objective function

changes strongly enough, and the positions of the optima can

move to any random location in the search space, then nc

tends to 0. On the contrary, if the changes are smooth enough,

the tracking of the optima is possible, then, the value of nc

corresponds to the number of promising optima to track.

B. Experimental results

The configuration of the computer used for simulation is

given in Table III, with other technical details. MLSDO was

tested using the test platform provided for the competition,

based on the EAlib library.

Table IV and Table V present the results of MLSDO for the

mean value (mean) and the corresponding standard deviation

(STD) of each test case. Table VI shows the performance of

MLSDO on each test case, and the overall performance.

In Table VI, by comparing the sums of scores obtained by

MLSDO for each problem, using a changing ratio equal to

1.0, we can see that MLSDO performs best for the problems

F1 and F5. As the diversification process is well controlled in

our algorithm, and the cited objective functions are smooth,

MLSDO finds quickly the global optimum. The worst results

are obtained for the problem F3, which is based on the

Rastrigin function. This is an highly multimodal function,

where each local optimum has a large attraction zone. Hence,

it can be harder for MLSDO to find the global optimum for

this problem.

We can see in Table VII that MLSDO performs worst on

the change scenarios T7 and T8. These change scenarios are

the only ones that make the dimension of the search space, or

the number of peaks, vary. They can be indeed hard kinds of

changes. The best results are obtained for the change scenario

T1. This scenario involves small displacements of the global

optimum in the search space, that can therefore be easier to

track. The varying performance of MLSDO across the different
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Changing ratio
T1 T2 T3 T4 T5 T6 T7 T8

mean ± STD mean± STD mean± STD mean± STD mean± STD mean± STD mean± STD mean± STD

0.3 0.117 ± 0.213 0.677± 0.426 0.180 ± 0.075 0.062± 0.121 0.012± 0.020 0.154 ± 0.320 — —

0.7 0.571 ± 0.395 1.145± 0.692 0.846 ± 1.098 0.045± 0.033 0.011± 0.018 0.086 ± 0.049 — —

1.0 0.583 ± 1.315 1.129± 1.110 1.736 ± 0.623 0.003± 0.006 0.046± 0.025 0.013 ± 0.007 1.909± 3.838 0.859 ± 2.449

TABLE IV
MEAN VALUES AND STD FOR THE PROBLEM F1 WITH CHANGING RATIOS 0.3, 0.7 AND 1.0, RESPECTIVELY.

Problem
T1 T2 T3 T4 T5 T6 T7 T8

mean± STD mean± STD mean± STD mean± STD mean ± STD mean± STD mean± STD mean± STD

F2 0.225 ± 0.268 0.079± 0.153 0.628± 0.445 0.002± 0.003 0.913 ± 0.694 0.022 ± 0.060 0.882± 2.817 4.142± 6.094
F3 0.173 ± 0.499 4.143± 5.863 4.648± 6.037 1.787± 2.951 0.508 ± 0.849 5.338 ± 9.577 146.003 ± 274.080 2.993± 4.479
F4 0.240 ± 0.399 0.334± 0.520 1.109± 1.690 0.020± 0.079 2.372 ± 4.582 0.160 ± 0.338 1.176± 3.252 4.620± 6.624
F5 0.010 ± 0.017 0.014± 0.015 0.005± 0.009 0.002± 0.003 0.005 ± 0.015 0.010 ± 0.013 0.086± 0.359 0.073± 0.257
F6 0.179 ± 0.437 1.375± 1.308 0.737± 1.008 0.113± 0.350 0.201 ± 0.241 0.689 ± 0.713 1.967± 4.299 3.941± 5.831

TABLE V
MEAN VALUES AND STD FOR THE PROBLEMS F2 TO F6 .

Problem Changing ratio T1 T2 T3 T4 T5 T6 T7 T8 Sum

F1

0.3 0.998 0.996 0.999 0.999 0.999 0.998 — — 5.989
0.7 1.000 1.000 0.978 0.998 0.998 0.998 — — 5.973
1.0 0.985 0.975 0.982 0.998 0.996 0.995 0.955 0.978 7.864

F2 1.0 0.976 0.976 0.962 0.987 0.908 0.977 0.930 0.840 7.557
F3 1.0 0.946 0.788 0.806 0.854 0.891 0.815 0.631 0.827 6.558
F4 1.0 0.952 0.944 0.925 0.962 0.850 0.943 0.907 0.815 7.298
F5 1.0 0.976 0.975 0.976 0.974 0.976 0.974 0.952 0.962 7.766
F6 1.0 0.968 0.932 0.941 0.956 0.962 0.925 0.900 0.836 7.419

The overall performance 56.424

TABLE VI
OVERALL PERFORMANCE.

T1 T2 T3 T4 T5 T6 T7 T8

Sum 5.802 5.591 5.592 5.731 5.583 5.628 5.276 5.259

TABLE VII
SUM, FOR EACH CHANGE SCENARIO, OF THE SCORES OBTAINED FOR THE PROBLEMS F1 TO F6 , USING A CHANGING RATIO EQUAL TO 1.0.

change scenarios shows that the algorithm is sensitive to the

nature and the severity of the changes.

VI. CONCLUSION

The MLSDO algorithm, developed in order to solve a wide

range of DOPs, has been presented. It is based on several

coordinated local searches and on the archiving of the found

local optima, in order to track them after a change in the

objective function.

In works in progress, in order to reduce the number of

parameters and increase the efficiency of MLSDO, we are

analyzing the sensitivity of its parameters. One future plan is

to make the critical parameters of MLSDO adaptive, i.e., such

that they will be automatically adjusted. Besides, as many real-

world DOPs are multiobjective, MLSDO may also be adapted

to the dynamic multiobjective optimization.

Our goal in this paper was to perform the experiments and

to present the obtained results as required by the technical

report for the IEEE WCCI-2012 competition [6]. The overall

performance (see Table VI) obtained by MLSDO is 56.424.
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