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Abstract In this chapter, we propose to use a dynamic optimization algorithm to
assess the deformations of the wall of the third cerebral ventricle in the case of a
brain cine-MR imaging. In this method, an elastic registration process is applied
to a 2D+t cine-MRI sequence of a region of interest (i.e. lamina terminalis). This
registration process consists of optimizing an objective function that can be con-
sidered as dynamic. Thus, a dynamic optimization algorithm, called MLSDO, is
used to accomplish this task. The obtained results are compared to those of several
well-known static optimization algorithms. This comparison shows the efficiency of
MLSDO, and the relevance of using a dynamic optimization algorithm to solve this
kind of problems.

1 Introduction

Hydrocephalus is a medical condition in which there is an abnormal accumulation
of cerebrospinal fluid in the ventricles, or cavities, of the brain. This may cause
increased intracranial pressure inside the skull and progressive enlargement of the
head, convulsion, tunnel vision, and mental disability. Hydrocephalus can also cause
death. Hydrocephalus may be suggested by symptoms; however, imaging studies of
the brain are the mainstay of diagnosis. In this paper, we focus on a method based on
cine-MRI sequences to facilitate this diagnosis, and to assist neurosurgeons in the
treatment of hydrocephalus. This method makes use of the dynamic optimization
paradigm.
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Recently, optimization in dynamic environments has attracted a growing interest,
due to its practical relevance. Almost all real-world problems are time dependent or
dynamic, i.e. their objective function changes over the time. For dynamic environ-
ments, the goal is not only to locate the global optimum, but also to track it as closely
as possible over the time. Then, a dynamic optimization problem can be expressed
as in (1), where f (x, t) is the objective function of a minimization problem, h j(x, t)
denotes the jth equality constraint and gk(x, t) denotes the kth inequality constraint.
All of these functions may change over time (iterations), as indicated by the depen-
dence on the time variable t.

min f (x, t)
s.t. h j(x, t) = 0 for j = 1,2, ...,u

gk(x, t)≤ 0 for k = 1,2, ...,v
(1)

In this chapter, we focus on a dynamic optimization problem with time constant
constraints. We propose to apply the Multiple Local Search algorithm for Dynamic
Optimization (MLSDO) [14] to the registration of sequences of images.

Image registration is the process of overlaying two or more images of the same
scene taken at different times, from different viewpoints, and/or by different sen-
sors. It is a critical step in all image analysis tasks in which the final information is
gained from the combination of various data sources like in image fusion or change
detection.
It geometrically aligns two images: the source and the target images. It is done by
determining a transformation that maps the target image to the source one. Thus,
registering a sequence of images consists of determining, for each couple of succes-
sive images, the transformation that makes the first image of the couple match the
following image.

Comprehensive surveys of the registration approaches are available in the litera-
ture, we can cite [8, 24, 36]. Registration approaches can be roughly based on:

• geometric image features (geometric registration), such as points, edges and sur-
faces ;

• measures computed from the image grey values (intensity based registration),
such as mutual information.

In the domain of medical imaging, a satisfactory solution can be found in many
cases by using a rigid or an affine transformation (deformation model applied to the
target image), i.e. the target image is only translated, rotated and scaled to match the
source image [28]. Elastic registration is required to register inter-patient images or
regions containing non-rigid objects. The goal is to remove structural variation be-
tween the two images to be registered. As stated in [24], most applications represent
elastic transformations in terms of a local vector displacement (disparity) field, or
as polynomial transformations in terms of the old coordinates.
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Fig. 1 Two images from a brain cine-MRI sequence: (a) first image of the sequence, (b) sixth
image of the sequence.

Fig. 2 A sequence of cine-MR images of the region of interest.

In the problem at hand, each image of the region of interest (i.e. lamina termi-
nalis) is extracted from a brain cine-MRI sequence of 20 images. This sequence
corresponds to 80% of a R-R cardiac cycle, more details about the acquisition pro-
cedure are given in [28]. An example of two images extracted from a brain cine-MRI
sequence is presented in Figure 1. Hence, each sequence is composed of 20 MR im-
ages. An example of sequence is illustrated in Figure 2. The goal is to register each
couple of successive images of the sequence. Hence, for a sequence of 20 images, 19
couples of successive images have to be registered. Then, the transformations that
result from this matching operation can be used to assess the deformation move-
ments of the third cerebral ventricle.

Several papers are proposed in the literature about the analysis and quantification
of cardiac movements, we can cite those recently published [6, 7, 33]. In our case,
the single approach that deals with the problem at hand is [28], because of the recent
appearance of the acquisition method of the images. The main difference between
the problem at hand and the cardiac problem lies in the amplitude of the movements
of the ventricles. Indeed, the amplitude of the cardiac ventricle movements is higher
than the amplitude of the cerebral ventricle movements. In this chapter, we propose
a method inspired from [28] to assess the movements of a region of interest (ROI).
Besides, another contribution of the present work is to show the importance of the
use of dynamic optimization algorithms for brain cine-MRI registration.

The rest of this chapter is organized as follows. In section 2, the method proposed
to register sequences of images is described. In section 3, the MLSDO algorithm
and its use for the problem at hand are presented. In section 4, a comparison of
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the results obtained by MLSDO on this problem to the ones of several well-known
static optimization algorithms is performed. This comparison shows the relevance of
using MLSDO on this problem. Finally, a conclusion and the works under progress
are given in section 5.

2 The registration process

A method inspired from [28] is proposed in this chapter to evaluate the movement
in sequences of cine-MR images. This operation is required in order to assess the
movements in the ROI over time. In [28], a segmentation process is performed on
each image of the sequence, to determine the contours (as a set of points) of the
walls of the third cerebral ventricle. Then, a geometric registration of each succes-
sive contours is performed, based on an affine deformation model. In the present
work, we propose to use an intensity based registration instead of a geometric reg-
istration process. This way, we do not have to use a segmentation process anymore.
Moreover, to evaluate the pulsatile movements of the third cerebral ventricle more
precisely, an elastic deformation model is used in this chapter.

Let Im1 and Im2 be two successive images of the sequence. Let the transpose
of a matrix A be denoted by AT. Then, we assume that a transformation TΦ allows
to match Im1 with Im′1 = TΦ(Im2) and, for every pixel o2 = (x2 y2)

T of Im2, it is
defined by:

x′1 = c1 x2
2 + c2 y2

2 + c3 x2 y2 + (c4 |c4|+1) x2 + c5 |c5| y2 + (c6)
3

y′1 = c7 x2
2 + c8 y2

2 + c9 x2 y2 + c10 |c10| x2 + (c11 |c11|+1) y2 + (c12)
3 (2)

where o′1 = (x′1 y′1)
T = TΦ(o2). The set of parameters Φ = {c1,c2, ...,c12} is esti-

mated through the maximization of the following criterion:

C(Φ) =
NMI(Φ)

P(Φ)+1
(3)

where NMI(Φ) computes the normalized mutual information [32] of Im1 and Im′1 ;
P(Φ) is part of a regularization term that penalizes large deformations of Im2, as
we are dealing with slight movements in the ROI. Besides, as the size of the ROI is
not constant, we have to normalize the coordinates of the pixels. Then, we make the
pixels in the ROI range in the interval [−0.5,0.5]. The use of this interval transforms
discrete coordinates of the pixels into continuous ones, as defined in (4). This inter-
val was determined empirically, and it is well fitted to the regularization term, and
to the transformation model used. Among a set of possible intervals, this one leads
to the best results, in terms of accuracy and speed. NMI(Φ) and P(Φ) are defined
in (5) and (6), respectively.
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Fig. 3 Overlapping area (Im1 ∩ Im′1) of the source image (Im1) and the transformed target image
(Im′1) in the registration of a couple of successive images of a sequence.

x = X
SX−1 −0.5

y = Y
SY−1 −0.5

(4)

where X ∈ {1,2, ...,SX −1} and Y ∈ {1,2, ...,SY −1} are the discrete coordinates of
a pixel ; x and y are the normalized coordinates of this pixel in [−0.5,0.5].

NMI(Φ) =
H(Im1)+H(Im′1)

H(Im1, Im′1)
(5)

P(Φ) = max
o2 ∈ Im1 ∩ Im′1

(
o2−o′1

)T (o2−o′1
)

(6)

where Im1 ∩ Im′1 is the overlapping area of Im1 and Im′1 (see Figure 3) ; H(Im1)
and H(Im′1) compute the Shannon entropy of Im1 and Im′1, respectively, in their
overlapping area ; H(Im1, Im′1) computes the joint Shannon entropy of Im1 and
Im′1, in their overlapping area. They are defined as follows:

H(Im1) =−
L−1

∑
i=0

p(i) log2 (p(i)) (7)

H(Im′1) =−
L−1

∑
j=0

p′( j) log2
(

p′( j)
)

(8)

H(Im1, Im′1) =−
L−1

∑
i=0

L−1

∑
j=0

p(i, j) log2 (p(i, j)) (9)

where L is the number of possible grey values that a pixel can take ; p(i), p′( j) and
p(i, j) are the probability of the pixel intensity i in Im1, the probability of the pixel
intensity j in Im′1 and the joint probability of having a pixel intensity i in Im1 and j
in Im′1, respectively. They are defined as follows:
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p(i) =
g(i)

∑
L−1
k=0 g(k)

(10)

p′( j) =
g′ ( j)

∑
L−1
l=0 g′ (l)

(11)

p(i, j) =
g(i, j)

∑
L−1
k=0 ∑

L−1
l=0 g(k, l)

(12)

where g(i) is the histogram of the overlapping area of Im1 (occurrence of gray level
i in Im1) ; g′( j) is the histogram of the overlapping area of Im′1 (occurrence of
gray level j in Im′1) ; g(i, j) is the joint histogram of the overlapping area of Im1
and Im′1 (occurrence of having a grey value equal to i in Im1 and to j in Im′1, see
equation (13)). However, in this work, we apply a low-pass filter to these histograms,
using a convolution with a Gaussian function, in order to accelerate the convergence
of the optimization process (the number of evaluations of the objective function
performed during the optimization process is reduced by 10.4%). Applying this filter
reduces indeed the number of local optima in the objective function, by smoothing
it. An illustration of the histogram of an MR image from a sequence, and of its
corresponding smoothed histogram, are illustrated in Figure 4.

In (13), the cardinal function is denoted by card, and the functions Im1(o) and
Im′1(o) return the grey values of a given pixel o in Im1 and Im′1, respectively.

g(i, j) = card
{

o ∈ Im1∩ Im′1, Im1(o) = i ∧ Im′1(o) = j
}

(13)

The registration problem can be formulated as an optimization problem defined
by:

max C(Φ) (14)

3 The MLSDO algorithm

In this section, MLSDO and its use on the problem at hand are described. At first,
the algorithm is presented. Then, the dynamic objective function proposed for the
problem at hand is described. Afterwards, the parameter fitting of MLSDO is given
to solve this problem.

3.1 Description of the algorithm

MLSDO uses several local searches, each one performed in parallel with the others,
to explore the search space, and to track the found optima over the changes in the
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Fig. 4 Illustration of the histogram of an MR image: (a) original histogram, (b) smoothed his-
togram used to accelerate the optimization process.

objective function. These local searches consist of moving step-by-step in the search
space, from a current solution to its best neighbor one, until a stopping criterion is
satisfied, reaching thus a local optimum. Each local search is performed by an agent,
and all the agents are coordinated by a dedicated module (the coordinator). Two
types of agents exist in MLSDO: the exploring agents (to explore the search space in
order to discover the local optima), and the tracking agents (to track the found local
optima over the changes in the objective function). The local searches performed
by the exploring agents have a greater initial step size than the one of the tracking
agents, because the exploring agents have to widely explore the search space. The
strategies used to coordinate these local search agents enable the fast convergence
to well diversified optima, in order to quickly react to a change and find the global
optimum. Especially, each agent performs its local search in an exclusive area of the
search space : an exclusion radius is attributed to each agent. This way, if several
agents converge to a same local optimum, then only one of them can continue to
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Fig. 5 Overall scheme of MLSDO.

converge to this local optimum : all the other conflicting agents are reinitialized
elsewhere in the search space. Another important strategy is the use of two levels of
precision in the stopping criterion of the local searches of the agents. In this way,
we prevent the fine-tuning of low quality solutions, which could lead to a waste of
fitness function evaluations; only the best solution found by MLSDO is fine-tuned.
Furthermore, the local optima found during the optimization process are archived,
to accelerate the detection of the global optimum after a change in the objective
function. These archived optima are used as initial solutions of the local searches
performed by the tracking agents. The overall scheme of MLSDO is illustrated in
Figure 5, where the local search agents are depicted by the numbered black-filled
circles in the search space S, and the neighborhood of the ith agent is denoted by Ni.
More details about this algorithm are in [14].

MLSDO has been compared to other dynamic optimization algorithms using two
of the main benchmarks : the Moving Peaks Benchmark (MPB) [4] and the Gener-
alized Dynamic Benchmark Generator (GDBG) [17, 19].

Among the three configurations of MPB proposed in [4], called scenarios, we
chose the most used one (scenario 2). MPB scenario 2 is caracterized by a five
dimensional search space with ten local optima. A change occurs in the objective
function of MPB every 5000 evaluations, and the total number of changes is equal
to 100.

The configuration of GDBG used in this chapter was used during the CEC’2009
competition on dynamic optimization. GDBG is made of 49 test cases that corre-
spond to the combinations of six problems with seven change scenarios. One of
these change scenarios involves varying the dimension of the search space between
5 and 15 dimensions. The dimension used in the other change scenarios is fixed
to 10. In GDBG, a change occurs in the objective function of a test case every
10000×d evaluations, where d is the dimension of the search space. The total num-
ber of changes for a test case is equal to 60.

The comparison, on MPB, of MLSDO with the other leading optimization al-
gorithms in dynamic environments is summarized in Table 1. These competing al-
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Algorithm Offline error
Moser and Chiong, 2010 [26] 0.25±0.08
MLSDO 0.35±0.06
Novoa et al., 2009 [29] 0.40±0.04
Lepagnot et al., 2009 [15, 16] 0.59±0.10
Moser and Hendtlass, 2007 [26, 27] 0.66±0.20
Yang and Li, 2010 [34] 1.06±0.24
Liu et al., 2010 [21] 1.31±0.06
Lung and Dumitrescu, 2007 [22] 1.38±0.02
Bird and Li, 2007 [1] 1.50±0.08
Lung and Dumitrescu, 2008 [23] 1.53±0.01
Blackwell and Branke, 2006 [3] 1.72±0.06
Mendes and Mohais, 2005 [25] 1.75±0.03
Li et al., 2006 [20] 1.93±0.06
Blackwell and Branke, 2004 [2] 2.16±0.06
Parrott and Li, 2006 [30] 2.51±0.09
Du and Li, 2008 [10] 4.02±0.56

Table 1 Comparison of MLSDO with competing algorithms on MPB using standard settings (sce-
nario 2).
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Fig. 6 Comparison of MLSDO with competing algorithms on GDBG.

gorithms are the only ones that we found suitable for comparison in the literature,
i.e., they are tested by their authors using the most commonly used configuration
of MPB. The offline errors (a measure of performance used in MPB, see [4]) and
the standard deviations are given, and the algorithms are sorted from the best to
the worst. Results are averaged on 50 runs of the tested algorithms. As we can see,
MLSDO is the second ranked algorithm in terms of offline error.

The comparison, on GDBG, of MLSDO with the other leading optimization al-
gorithms in dynamic environments is summarized in Figure 6. The algorithms are
ranked according to their overall performance (a score between 0 and 100, denoted
by op, see [19]). As we can see, MLSDO is the first ranked algorithm on this bench-
mark.
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3.2 Cine-MRI registration as a dynamic optimization problem

The registration of a cine-MRI sequence can be seen as a dynamic optimization
problem. Then, the dynamic objective function optimized by MLSDO changes ac-
cording to the following rules:

• The criterion in (3) has to be maximized for each couple of successive images,
as we are in the case of a sequence, then the optimization criterion becomes:

C(Φ(t)) =
NMI(Φ(t))
P(Φ(t))+1

(15)

where t is the index of the current couple of images in the sequence. Φ(t),
NMI(Φ(t)) and P(Φ(t)) are the same as Φ , NMI(Φ) and P(Φ) defined before,
respectively, but here are dependent on the couple of images.

• Then, the dynamic optimization problem is defined by:

max C(Φ(t)) (16)

• If the current best solution (transformation) found for the couple t cannot be
improved anymore (according to a stagnation criterion), the next couple (t + 1)
is treated.

• The stagnation criterion of the registration of a couple of successive images is
satisfied if no significant improvement (higher than 1E-5) in the current best
solution is observed during 5000 successive evaluations of the objective function.

• Thus, the end of the registration of a couple of images and the beginning of the
registration of the next one constitute a change in the objective function.

3.3 Parameter fitting of MLSDO

Table 2 summarizes the six parameters of MLSDO that the user has to define. These
values will be used to perform the experiments reported in the following section.

In this table, the values given are suitable for the problem at hand, and they
were fixed experimentally. Among several sets of values for the parameters, we
selected the one that minimizes the number of evaluations performed. One can see
that only one exploring agent is used to solve this problem. It is indeed sufficient
for this problem, and using more than one exploring agent increases the number of
evaluations required to register a sequence. However, using more than one exploring
agent can improve the performance of MLSDO on other problems.
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Name Type Interval Value Short description
rl real (0,re) 0.005 initial step size of tracking agents

re real (0,1] 0.1 exclusion radius of the agents, and initial step size of exploring
agents

δph real [0,δpl ] 1E-5 highest precision parameter of the stopping criterion of the
agents local searches

δpl real [δph,+∞] 1E-4 lowest precision parameter of the stopping criterion of the agents
local searches

na integer [1,10] 1 maximum number of exploring agents

nc integer [0,20] 2 maximum number of tracking agents created after the detection
of a change

Table 2 MLSDO parameter setting for the problem at hand.

4 Experimental results and discussion

The registrations of two couples of slightly different images are illustrated in Fig-
ures 7 and 8, and the registrations of two couples of significantly different images
are illustrated in Figures 9 and 10. As we can see in Figures 7(e) and 7(f), as well as
in Figures 8(e) and 8(f), if the movements in the ROI are not significant, then only
noise appears in the difference images. Hence, the transformation used to register
the couple of images (Figures 7(d) and 8(d)) does not deform the second image of
the couple significantly. On the other hand, significant movements in the ROI leave
an important white trail in the difference images, as illustrated in Figures 9(e) and
10(e). Then, a significant transformation (Figure 9(d) and 10(d)) has to be applied
in order to eliminate the white trail (see Figure 9(f) and 10(f)).

A comparison between the results obtained by MLSDO and those obtained by
several well-known static optimization algorithms is presented in this section. These
algorithms, and their parameter setting, empirically fitted to the problem at hand,
are defined below (see references for more details on these algorithms and their
parameter fitting):

• CMA-ES (Covariance Matrix Adaptation Evolution Strategy) [12] using the rec-
ommended parameter setting, except for the initial step size σ , set to σ = 0.5.
The population size λ of children and the number of selected individuals µ are
set to λ = 11 and µ = 5 ;

• SPSO-07 (Standard Particle Swarm Optimization in its 2007 version) [11] using
the recommended parameter setting, except for the number S of particles (S= 12)
and for the parameter K used to generate the particles neighborhood (K = 8) ;

• DE (Differential Evolution) [31] using the “DE/target-to-best/1/bin” strategy, a
number of parents equal to NP = 30, a weighting factor F = 0.8, and a crossover
constant CR = 0.9.
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(a) (b) (c)

(d) (e) (f)

Fig. 7 Illustration of the registration of a couple of slightly different images of a sequence: (a) the
first image of the couple, (b) the second image of the couple, (c) the second image after applying
the found transformation to it, (d) illustration showing the transformation applied on the second
image of the couple to register it, (e) illustration showing the difference, in the intensity of the
pixels, between the two images of the couple: a black pixel indicates that the intensities of the
corresponding pixels in the images are the same, and a white pixel indicates the highest difference
between the images, (f) illustration showing the difference, in the intensity of the pixels, between
the first image and the transformed second image.

(a) (b) (c)

(d) (e) (f)

Fig. 8 Illustration of the registration of another couple of slightly different images of a sequence,
in the same way as in Figure 7.
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(a) (b) (c)

(d) (e) (f)

Fig. 9 Illustration of the registration of a couple of significantly different images of a sequence:
(a) the first image of the couple, (b) the second image of the couple, (c) the second image after
applying the found transformation to it, (d) illustration showing the transformation applied on the
second image of the couple to register it, (e) illustration showing the difference, in the intensity of
the pixels, between the two images of the couple: a black pixel indicates that the intensities of the
corresponding pixels in the images are the same, and a white pixel indicates the highest difference
between the images, (f) illustration showing the difference, in the intensity of the pixels, between
the first image and the transformed second image.

(a) (b) (c)

(d) (e) (f)

Fig. 10 Illustration of the registration of another couple of significantly different images of a se-
quence, in the same way as in Figure 9.
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t c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 C∗(Φ(t))
1 0.039 -0.022 0.005 0.105 -0.034 0.139 -0.039 0.017 0.025 0.091 0.132 0.090 1.199
2 -0.005 -0.029 0.025 0.085 -0.014 0.203 0.077 0.055 0.051 0.068 -0.077 -0.264 1.201
3 0.055 0.063 0.048 0.094 -0.104 -0.239 0.068 0.000 0.000 -0.074 -0.083 -0.256 1.192
4 0.021 0.031 -0.001 0.095 -0.077 -0.223 0.025 0.013 0.006 0.081 -0.144 -0.246 1.195
5 0.063 0.000 0.003 -0.074 -0.026 -0.089 -0.026 0.041 0.011 0.100 0.145 -0.128 1.218
6 0.002 -0.063 -0.033 -0.115 0.034 0.224 -0.019 -0.027 0.024 0.015 0.087 0.258 1.209
7 0.013 -0.092 0.016 0.036 0.080 0.253 -0.060 -0.045 -0.033 -0.077 0.131 0.247 1.208
8 0.003 -0.068 -0.004 -0.023 0.117 0.238 -0.069 -0.047 -0.032 -0.078 0.131 0.247 1.195
9 0.065 -0.020 -0.007 0.044 0.061 -0.046 -0.064 -0.047 -0.023 -0.081 0.131 0.251 1.201
10 0.050 -0.004 -0.017 0.072 0.056 -0.061 0.051 0.005 0.011 -0.052 0.135 -0.043 1.216
11 0.050 0.000 -0.012 -0.004 0.073 -0.053 -0.059 0.047 0.002 0.099 0.164 -0.178 1.216
12 0.060 0.011 0.003 0.080 -0.033 -0.191 -0.024 0.032 0.036 -0.068 0.108 0.048 1.225
13 0.042 0.000 0.000 0.050 -0.018 -0.060 -0.023 0.016 0.002 -0.085 -0.064 -0.218 1.232
14 0.064 -0.005 0.000 0.094 -0.021 -0.199 -0.016 0.075 0.065 -0.039 0.065 -0.210 1.232
15 0.025 -0.008 0.042 0.049 -0.072 0.172 0.037 0.029 0.000 0.104 0.107 -0.037 1.235
16 0.060 0.007 0.003 0.082 -0.026 -0.191 -0.024 0.032 0.034 -0.063 0.111 -0.049 1.216
17 0.050 -0.005 0.000 0.021 0.010 -0.071 -0.025 0.047 0.052 0.018 0.080 -0.170 1.226
18 0.052 -0.005 -0.017 0.083 0.108 -0.121 -0.018 0.042 -0.001 0.071 0.075 0.149 1.225
19 -0.006 0.056 -0.011 -0.080 0.072 -0.210 -0.025 0.076 0.033 -0.057 0.084 -0.158 1.214

Table 3 Transformations found for the registration of each couple of images. The value of the
objective function of the best solution found, denoted by C∗(Φ(t)), is also given.

As these algorithms are static, we have to consider the registration of each cou-
ple of successive images as a new problem to optimize. Thus, these algorithms are
restarted after the registration of each couple of images, using the stagnation crite-
rion defined in section 3.2. The results obtained using MLSDO, as a static optimiza-
tion algorithm, are also given.

The parameters found for the elastic transformation model are given in Table 3.
In Table 4, the average number of evaluations among 20 runs of the algorithms are
given. The average of the best objective function values (see equation (15)) of each
registration of the sequence is also given, averaged on 20 runs of the algorithms.
The computational complexity of the registration method, using each algorithm,
is also given in this table. The convergence of MLSDO, and that of the best per-
forming static optimization algorithm on the problem at hand, i.e. CMA-ES, are
illustrated by the curves in Figure 11. It shows the evolution of the relative error(

C∗(Φ(t))−C(Φ(t))
C∗(Φ(t))

)
between the value of the objective function of the best solution

found (C∗(Φ(t))) and that of the current solution (C(Φ(t))) for each couple of im-
ages (t). The presented curves give an idea about the convergence of the algorithms
to an optimal value. It can also be seen as a stagnation metric of the algorithms. In
this figure, the number of evaluations per registration of a couple of images is fixed
to 5000, in order to enable the comparison of the convergence of the algorithms. For
readability, a logarithmic scale is used on the ordinates.

As we can see, the average objective function value given in Table 4 shows that
the algorithms have a similar average precision. However, we can see in Table 4 that
the number of evaluations of the objective function performed by MLSDO, used as
a dynamic optimization algorithm, is significantly lower than the ones of the static
optimization algorithms. A Jarque-Bera statistical test has been applied on the num-
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Algorithm Evaluations ∑
19
t=1

C∗(Φ(t))
19

Complexity

Dynamic optimization MLSDO 6880.68 ± 585.92 1.21 ± 7.0E-4 O(n d3)

Static optimization

CMA-ES 7709.14 ± 467.75 1.21 ± 9.1E-4 O(n d2)
SPSO-07 8007.21 ± 364.24 1.21 ± 8.8E-4 O(n d)

DE 9131.25 ± 279.20 1.21 ± 9.3E-4 O(n d)
MLSDO 9522.76 ± 648.87 1.21 ± 1.7E-3 O(n d3)

Table 4 Average number of evaluations to register a couple of images, and average value of
C∗(Φ(t)), obtained by each algorithm. The computational complexity of the registration method,
using each algorithm, is also given, where n is the number of images in the sequence and d is the
dimension of the search space.
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Fig. 11 Convergence graph of MLSDO and CMA-ES on the problem at hand.

bers of evaluations performed by the compared algorithms. This test indicates at a
95% confidence level that the numbers of evaluations follow a normal distribution.
Then, we can perform a one-way ANOVA on these numbers of evaluations. This test
confirms at a 95% confidence level that there is a significant difference between the
performances of at least two of the compared algorithms. Then, the Tukey-Kramer
multiple comparisons procedure has been used to determine which algorithms dif-
fer in terms of number of evaluations. It appears that MLSDO performs significantly
differently from all the other tested algorithms. It can also be seen in Figure 11 that
the convergence of MLSDO to an acceptable solution is faster than CMA-ES (the
best performing static optimization algorithm on the problem at hand) for the reg-
istration of most of the couples of contours, especially for the last ones. MLSDO
needs indeed to learn from the first registrations in order to accelerate its conver-
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gence on the next ones. Thus, this comparison shows the efficiency of MLSDO and
the significance of using a dynamic optimization algorithm on the problem at hand.

5 Conclusion

In this chapter, a registration process based on a dynamic optimization algorithm is
proposed to register quickly all the images of a cine-MRI sequence. It takes profit
from the effectiveness of the dynamic optimization paradigm. The process is se-
quentially applied on all the 2D images. The entire procedure is fully automated
and provides an accurate assessment of the ROI deformation throughout the entire
cardiac cycle. Our work under progress consists of the parallelization of the MLSDO
algorithm using Graphics Processing Units.
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