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Abstract—Many real-world problems are dynamic and re-
quire an optimization algorithm that is able to continuously
track a changing optimum over time. In this paper, a new
multiagent algorithm for solving dynamic problems is studied.
This algorithm, called MADO, is analyzed using the Moving
Peaks Benchmark, and its performances are compared to
those of competing dynamic optimization algorithms on several
instances of this benchmark. The obtained results show the
efficiency of MADO, even in multimodal environments.
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I. INTRODUCTION

Recently, optimization in dynamic environments has at-

tracted a growing interest, due to its practical relevance.

Many real-world problems are dynamic optimization prob-

lems (DOPs), i.e. their objective function changes over time.

For dynamic environments, the goal is not only to locate the

optimum, but to follow it as closely as possible.

In this paper, a simplified and improved version of MADO

algorithm is proposed. The algorithm, called ”MADO” for

”MultiAgent Dynamic Optimization”, has been developed in

order to solve a wide range of continuous DOPs efficiently. It

is a multiagent based method, that makes use of a population

of agents to explore the search space. The optima found by

the agents are archived in a memory, to be used when a

change is detected.

The rest of this paper is organized as follows. Section 2

discusses related works. Section 3 describes the proposed

algorithm. Section 4 presents the benchmark set used to

test the algorithm. Experimental results are discussed in

Section 5. Conclusion and work under progress are evoked

in section 6.

II. RELATED WORKS

In this section, we present competing dynamic meta-

heuristics that have been proposed in the literature. We only

focus on the different techniques for handling continuous

DOPs. In principle, these techniques include restarting,

multi-population, memory-based and diversity preserving

(see [1]).

In [2], a multipopulation differential evolution (DE) algo-

rithm is proposed, where some techniques are added in order

to increase diversity. DE is a population-based approach.

Its strategy consists in generating a new position for an

individual according to the differences calculated between

other randomly selected individuals. This algorithm is based

on two main parameters, that must be correctly fitted.

However in [2], these parameters are randomly generated

in order to make the use of DE easier.

In [3], the authors propose two multi-swarms PSO algo-

rithms based on an atomic model. The first algorithm uses

several swarms, composed of a sub-swarm of mutually re-

pelling particles, orbiting around another sub-swarm of neu-

tral, or conventional, PSO particles. The second algorithm is

based on a quantum model of the atom, where the charged

particles (electrons) will not follow a classical trajectory,

but will be rather randomized within a ball centered on the

swarm attractor. Both of these algorithms place their swarms

on each of localized optima, thus letting each swarm track a

different optimum. This approach of using charged particles

is also used in [4] and [5], with other techniques to increase

diversity and to track optima.

Another PSO algorithm is proposed in [6], that uses two

populations of particles. The first one is for the diversifi-

cation, and the second is for the intensification. In [7] and

[8], the authors make collaborate two kinds of populations:

PSO swarm for the intensification, coupled with one or

two other populations that follow the rules of evolutionary

algorithms (EAs). These populations, based on EAs, are used

to maintain diversity and to keep track of previously found

solutions.

In [9], an algorithm based on extremal optimization (EO)

is proposed. EO does not use a population of solutions, but

improves a single solution using mutation. This algorithm

uses a ”stepwise” sampling scheme that samples every

dimension of the search space in equal distances. Then,

the algorithm takes the best candidate as the next solution.

Afterwards, it proceeds to a hill-climbing phase, in order

to fine-tune the solution. Then, the solution is stored in the

memory, and the method is applied again on another ran-

domly generated solution. This algorithm is simple, efficient,

and allows to obtain good results on a specific test called

the ”Moving Peaks Benchmark” (MPB) [10]. This method

is especially developed and fitted for this benchmark.
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Figure 1. Overall scheme of MADO algorithm.

III. THE PROPOSED MADO ALGORITHM

In this paper, we will only give an overview of the

algorithm. For more details, see [11].

A. Overall scheme

MADO is a multiagent algorithm that consists in three

modules: the agents manager, the memory manager and the

coordinator. The overall scheme of the MADO algorithm is

illustrated in figure 1. As it is shown, all the interactions

between the memory manager and the agents manager are

through the coordinator. Moreover, all global decisions are

taken by the coordinator. The memory manager maintains

the archive of local optima, that are provided by the coor-

dinator. The agents manager informs the coordinator about

the found optima, and receives its instructions for creating,

deleting, and repositioning agents.

As we consider an Euclidian space of d dimensions as the

search space, the Euclidian distance will be used. However,

the search space may not have the same bounds on each

dimension. Then, we will use a ”normalized” basis. We

denote by Δi the size of each interval that defines the search

space, with i ∈ [1, d]. Then, we use the modified unit vectors

ui, with {�u1 = �e1
Δ1

, �u2 = �e2
Δ2

, ..., �ud = �ed

Δd
} (ei form the

canonical basis), as the basis of the Euclidian space where

the search space is defined.

B. Agents management module

1) The exploration strategy of the agents: agents explore

the search space step-by-step, moving from their current

position to a better one in their neighborhood, until they

reach a local optimum. As agents are nearsighted, they

can only test candidate solutions for their next move in

a delimited zone of the search space, centered on their

current position. We define the neighborhood of an agent as

a set of N candidate solutions placed on the hypersphere of

radius R centered on the current position of the agent. These

candidate solutions are placed in a way that maximizes the

smallest distance between them. This is done by initializing a

set of N uniformly spaced points on the unit hypersphere (at

the beginning of MADO) using a well known electrostatic

�
The agent is depicted by a grey-filled circle. Candidate
solutions are represented by black squares.

Figure 2. The sampling of candidate solutions of an agent (d = 2, N = 8).

(a) (b)
Figure 3. The two kinds of trajectories that lead to a step size adaptation.
(a) Agent turning around an optimum. (b) Agent hill climbing a large
peak.

repulsion heuristic described in [12]. Figure 2 illustrates this

neighborhood in dimension 2.

2) The step size adaptation strategy: the adaptation of the

radius R makes use of trajectory information gathered along

the steps of an agent. We propose to use the ”cumulative

path length control” described in [13], with much simpler

calculations. The figure 3 illustrates the two possible kinds

of ”bad” trajectories that an agent may follow. When one

of these cases is detected, a decrease (a) or an increase (b)

of the step size R is performed, by a constant coefficient

denoted by cr. If the agent can not find a better solution in

its neighborhood, R is decreased (R ← cr R).

3) The diversity maintaining strategy: to prevent several

agents from exploring the same zone of the search space, an

exclusion radius re is attributed to each agent. Hence, when

an agent detects one or several other agents at a distance

lower than re, only the agent having the best fitness is

allowed to continue its search. All the other agents have

to start a new search elsewhere [11].

In this new version of MADO, when the stepsize of an

agent decreases below rl, the algorithm in figure 4 is exe-

cuted to prevent the agent from wasting fitness evaluations

in order to converge to an already stored optimum.

4) The convergence process and the stagnation criterion:
we consider that an agent converged to a local optimum,

when none of its last δt steps improved significantly the

fitness value of its current solution (> δp). This is a well

known stagnation criterion for stopping a local search. The

parameter δt is also used to prevent the waste of unecessary

fitness evaluations, when an agent explores its neighborhood.

When an agent has finally found a local optimum, the agents

manager sends this optimum to the coordinator, that will

transmit it to the memory manager. Then, the coordinator

shows to the agents manager where this agent will be

repositioned, in order to perform a new trajectory search.

In this new version of MADO, when an agent starts a new

trajectory search, its step size (R) is reset to re, and re
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i ← 1

while i ≤ card(Sm) do

if dista(Oi) ≤ √
rl re and fi > fc then

Ask the coordinator to set a new position and step size for the
agent

i ← card(Sm)

end
i ← i + 1

end

Figure 4. Algorithm to prevent converging to a known optimum, where
Sm is the archive of stored optima, card(Sm) is the number of optima
stored in Sm, Oi is the ith optimum in Sm, dista(Oi) is the distance
between the agent and Oi,

√
rl re is the geometric average of the set

{rl, re}, fi is the fitness of Oi, and fc is the current fitness of the agent.
In this algorithm, we suppose that we are in the case of a maximization
problem. For a minimization problem, the condition fi > fc becomes
fi < fc.
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Figure 5. The main algorithm flowchart of a MADO agent.

remains constant throughout the run of MADO.

5) The flowchart of an agent: agents perform their search

by running their local search algorithm independently of

each other. The flowchart of the agents search algorithm is

illustrated in figure 5. One can see that a special state named

”SYNCHRONIZATION” appears two times in this flowchart.

This state marks the end of one ”loop” of the algorithm of an

agent. Hence, when this state is reached, the agents manager

halts the execution of this agent until all other agents have

reached a SYNCHRONIZATION state. Then, the execution

of the agents is resumed at the SYNCHRONIZATION, where

they previously halted on. This special state allows to run

in parallel the agents.

C. Memory management module

1) The storing strategy of found local optima: the mem-

ory manager maintains the archive of local optima found by

the agents. This archive must be bounded, its size is fixed

by a predefined number nm of entries. Thus, all the found

optima cannot be included into this archive, only the nm best

ones will be stored. When the archive is full, the following

conditions are used to update the archive:

• if the fitness of the new optimum is better or equal

to the worst optimum of the archive, then this worst

optimum is replaced by the new one,

• if there is one or several other optima in the archive that

are ”too close” to the new optimum, then this subset of

solutions is replaced by the best optimum among this

set.

D. Coordinator

The coordinator administrates all the main operations of

the search process, by giving instructions to the memory

and agents management modules, and receiving information

from them. It is in charge of the creation of the agents at

the beginning of the algorithm. The number of agents to be

created is given by the parameter na. The locations of these

agents at the start of the search process are not randomly

generated, but are computed in order to maximize the lowest

distance between two of them, inside an hyperrectangle

denoted by T . (T is the Cartesian product of intervals

Ti = [re, 1 − re] with i = 1, 2, ..., d).

The instruction to create the initial set of agents is given to

the agents management module, then the MADO algorithm

can start the search process. In this new version of MADO,

the initial step size of the agents is set to re.

The coordinator detects also the changes in the environ-

ment, by re-evaluating the fitness of the best optimum of

the archive, and, if the archive is empty, the fitness of an

agent randomly chosen, and compare it to its previous value.

If these values are different, a change is supposed to have

occurred, and a tracking of the stored optima is performed.

E. Parameter fitting of MADO

Table I summarizes the parameters of MADO that the

user has to define. In this table, the values of the parameters

are suitable for MPB and they were fixed empirically. These

values will be used to perform the experiments reported in

section V.

IV. BENCHMARK SET

The most commonly used testbed for dynamic optimiza-

tion is the Moving Peaks Benchmark (MPB) [10]. This

benchmark is becoming the standard for testing dynamic

optimization algorithms, and is claimed to be representative

of real world problems [14]. To test and compare our

algorithm to the competing ones, this testbed was adopted.

MPB consists of a number of peaks that vary their shape,

position and height randomly upon time. At any time, one of

the local optima can become the new global optimum. MPB

generates DOPs consisting of a set of peaks that periodically

move in a random direction, by a fixed amount s (the

change ”severity”). The movements are autocorrelated by

a coefficient λ, 0 ≤ λ ≤ 1, where 0 means uncorrelated and
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Table I
MADO PARAMETER TYPICAL SETTING.

Name Default Short description
na 4 initial (and average) number of agents

nm 10 capacity of the archive of found optima (depends on the
degree of multimodality of the landscape: when there is
a lot of local optima, higher values may produce better
results)

N 3 number of neighbor candidate solutions (should grow with
the number of dimensions, and depends on how fast the
changes occur: in static environments, higher values should
be used)

cu 0.5 weight of the cumulative dot product (should be in [0, 1])

cr 0.8 step size adaptation coefficient (should be in ]0, 1], and
depends on the ruggedness of the landscape: for a high
ruggedness, cr tends toward 1, and for a low one, cr

tends toward 0)

re 0.2 initial step size and exclusion radius (should be in ]0, 1],
and depends on the ruggedness in the same way as cr)

rl 0.007 initial step size of tracking agents (should be in ]0, 1], and
depends on the ruggedness in the same way as cr , but
also depends on the distance an optimum can move when
a change occurs in the environment)

δt 2 maximum number of moves an agent can make with-
out improving its fitness more than δp (depends on the
ruggedness of the landscape: its value should grow with
the ruggedness)

δp 0.001 precision parameter of the stagnation criterion of the agents
trajectory searches (depends on the ruggedness in the same
way as δt, but also depends on how fast the changes occur:
in fast changing environments, we cannot spend a lot of
time fine tuning the solution, thus δp should be higher)

1 means highly autocorrelated. The peaks change position

every α iterations, and α is called time span.

In order to evaluate the performance, the ”offline error”

is used. The offline error (oe) is defined by:

oe =
1

Nc

Nc∑
j=1

⎛
⎝ 1

Ne(j)

Ne(j)∑
i=1

(
f∗

j − f∗
ji

)
⎞
⎠ (1)

where Nc is the total number of fitness landscape changes

within a single experiment, Ne(j) is the number of iterations

performed for the jth state of the landscape, f∗
j is the value

of the optimal solution for the jth landscape, and f∗
ji is the

current best fitness value found for the jth landscape.

We can see that this measure has some weaknesses: it

is sensitive to the overall height of the landscape, and to

the number of peaks. It is important for an algorithm to

find the global optimum quickly, to minimize the offline

error. Hence, the most successful strategy is a multi-solution

approach that keeps track of every local peak [9].

In [10], three sets of parameters, called scenarios, were

proposed. It appears that the most commonly used set of

parameters for MPB is scenario 2 (see table II), hence, it

will be used in this paper.

Table II
MPB PARAMETERS IN SCENARIO 2.

Parameter Scenario 2
Num. Peaks 10
Dimensions 5
Peak heights [30, 70]
Peak widths [1, 12]

Change cycle 5000
Change severity 1
Height severity 7
Width severity 1

Correlation coefficient λ 0

Table III
COMPARISON OF THE VERSIONS OF MADO ON MPB (SCENARIO 2).

Algorithm offline error
New version of MADO 0.58 ± 0.10
Old version of MADO 0.68 ± 0.17

V. RESULTS AND DISCUSSION

A. Analysis of the parameters of MADO

In first, we compare the obtained results on MPB (sce-

nario 2) of this new version of MADO and the old one.

The algorithms are stopped after 5 . 105 evaluations, and

results are averaged on 100 runs. We used the parameter

values in table I for both versions. The obtained results are

summarized in table III. One can remark that the new version

obtains better results with a lower standard deviation than

that of the old one. In terms of complexity, this new version

is less complex than the old one.

The robustness of MADO is studied by varying the value

of one of its parameters, while the others are left fixed to

their default values (see table I). Each parameter is studied

this way, by applying the algorithm on MPB (scenario

2) and on the Rosenbrock function on five dimensions.

The Rosenbrock function is used as a static minimization

problem, that admits only one global optimum equal to 0.

The search space used for Rosenbrock is [−10, 10]5. The

algorithm is stopped when 5 . 105 evaluations have been

performed on MPB, and when 4 . 104 evaluations have been

performed on Rosenbrock. The performance of MADO is

measured on MPB using the offline error, and it is measured

on Rosenbrock using the fitness of the best found solution.

Results are averaged on 100 runs, and illustrated in figure 6

and figure 7.

As one can see, varying the value of nm does not perturb

the performance of MADO significantly on Rosenbrock.

However, on MPB, the performance of MADO increases

with the value of nm. Thus, nm is only significant in

dynamic environment, and it has to be high enough to let

the algorithm store a sufficient number of local optima. It

appears that a value greater or equal to 10 is good for

MPB. The best value for the parameter N (size of the

neighborhood of an agent) on MPB and Rosenbrock is 3.

However, in static environment, or for a higher number of

dimensions, a higher value can produce better results. The
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Figure 6. Robustness on MPB.

behavior of na, dt and cu is similar on both test functions,

and it appears that the best values of those parameters are

na = 4, dt = 2, cu = 0.5. The best value of rl in both

cases is 0.007. However, good results can also be obtained

in static environment with a lower value of rl. The behavior

of re, dp and cr is similar in both test cases, but the optimal

values of these parameters appear to be problem dependent.

Thus, even if their optimal values stay close to the default

values, it is needed to fit these three parameters correctly.

The convergence of MADO is studied in figure 8, using

0 20 40 60

0.00

0.20

0.40

0.60

0.80

1.00

1.20

nm

Best fitness found

1 11 21

0.00

0.20

0.40

0.60

0.80

1.00

1.20

dt

Best fitness found

0.00 0.05 0.10 0.15 0.20

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

dp

Best fitness found

2 7 12 17

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

N

Best fitness found

0.00 0.20 0.40 0.60

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80

re

Best fitness found

0.00 0.20 0.40 0.60 0.80 1.00

0.00

0.20

0.40

0.60

0.80

1.00

cu

Best fitness found

1 6 11 16

0.00

0.50

1.00

1.50

2.00

na

Best fitness found

0.00 0.05 0.10 0.15

0.00

0.50

1.00

1.50

2.00

rl

Best fitness found

0.50 0.60 0.70 0.80 0.90 1.00

0.00

0.20

0.40

0.60

0.80

1.00

1.20

cr

Best fitness found

Figure 7. Robustness on Rosenbrock function.

MPB with scenario 2 in dimension 2. In this graph, the

axis y corresponds to the first 10 time spans, the axis x
corresponds to the first 1000 function evaluations of a time

span with a granularity of 50 evaluations, and the axis z is

equal to the relative error
f∗

y −f∗
yX

f∗
y

, where X = 50 x, using

the notations of equation (1). For more clarity, we used a

logarithmic scale for z axis.

As one can see, the convergence of MADO in each time

span is very fast. The first time span shows the highest values

at the beginning, because MADO has not yet recorded the
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Figure 8. Relative error of the fitness on MPB.

Figure 9. Average relative error of the fitness on MPB.

locations of each local optimum of the landscape. When

the local optima are found, the algorithm converges faster

by tracking them, rather than redetecting them. The average

evolution of the relative error of the fitness among all time

spans is given in figure 9, where x corresponds to the 5000
iterations of a time span, and f̄∗

x is the average value of f∗
x

on 100 time spans. As illustrated in this figure, it takes only

3 iterations to get a relative error lower than 10−1, and 278
iterations to get a relative error lower than 10−2.

B. Comparison with competing methods

The comparison, on MPB, of MADO with the other

leading optimization algorithms in dynamic environments is

summarized in table IV. The offline errors and the standard

deviations are given, and the algorithms are sorted from the

best to the worst. Results are averaged on 100 runs or 50
runs of the tested algorithms, and the maximum number of

fitness evaluations per run is fixed to 5 . 105, i.e. 100 changes

per run.

Results of competing algorithms are given in the refer-

ences listed in the first column. As we can see, MADO

allows to have better results than the other competing

algorithms.

VI. CONCLUSION

This implementation has been specifically designed for

dynamic continuous optimization, and proved its efficiency

on the Moving Peaks Benchmark. This algorithm can also

be expected to produce good results when solving static

Table IV
COMPARISON WITH COMPETING ALGORITHMS ON MPB (SCENARIO 2).

Algorithm number of runs offline error

MADO 100
50

0.58 ± 0.10
0.59 ± 0.10

Moser and Hendtlass, 2007 [9] 100 0.66 ± 0.20
Lung and Dumitrescu, 2007 [7] 50 1.38 ± 0.02
Lung and Dumitrescu, 2008 [8] 50 1.53 ± 0.01
Blackwell and Branke, 2006 [4] 50 1.72 ± 0.06
Mendes and Mohais, 2005 [2] 50 1.75 ± 0.03
Li et al., 2006 [5] 50 1.93 ± 0.06
Blackwell and Branke, 2004 [3] 50 2.16 ± 0.06
Du and Li, 2008 [6] 50 4.02 ± 0.56

objective functions. However, MADO has four parameters

that have to be correctly fitted, N , re, dp and cr. Another

one, rl, may also require some attention, though it is not

as critical as the first four ones. The other three parameters

of the algorithm should be left at their default values, since

they do not perturb the performance significantly. Further

studies should be made on the parameter N , to find a more

widely applicable default value. Future work should be done

to study co-dependencies between the parameters, and to

make them auto-adaptive.
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